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INTRODUCTION

e Hescape to space could account for the loss of 85% of the initial water inventory of Mars over
the last 4 billion years.

e Previous investigations have found seasonal variations of an order of magnitude or more in the

upper atmospheric H density, implying a similar variation in the H escape rate. chaffin et ai. (2014), clarke
et al. (2014), Bhattacharyya et al. (2015), Clarke et al. (2017)

— These variations are too rapid to be explained by the slow and steady delivery of H, from
the lower atmosphere by diffusion. This is the “classical” source of H.

e Rapid seasonal and dust-storm-induced changes in the vertical distribution of H O have now
been observed by MCS, SPlCAM, ACS, and NOMAD. Heavens et al. (2018), Fedorova et al. (2018, 2019), Vandaele et al. (2019)

e H, Otransported to the upper atmosphere is rapidly destroyed and the H produced can escape
efficiently. MAVEN Neutral Gas and lon Mass Spectrometer (NGIMS) is uniquely positioned to
collect in situ measurements of neutral and ionic species in the upper atmosphere.
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DIRECT TRANSPORT OF WATER

o Diffusion of H, is slow and steady, too slow to explain observed rapid order-of-magnitude
variations in the exospheric H abundance.

e Transport of H O from the lower atmosphere, however, is fast enough. redorova etal. (2018, 2019), Heavens etat.
(2018), Vandaele et al. (2019)

e NGIMS data can be used to investigate the diurnal, seasonal, and dust-related variation of
water and water-related ions in the upper atmosphere of Mars.

— We measure abundances of H20+ and H3O+.

— We calculate H,O abundances from NGIMS measurements assuming photochemical
equilibrium and use direct measurements of H, from the NGIMS neutral mode.

e This allows us to differentiate between the transport of H,0 and H, to the upper atmosphere.
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VARIATION OF WATER
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VARIATION OF WATER

e The upper atmosphere (~150 km)
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VARIATION OF WATER lONS
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CALcULATING WATER DENSITIES

e Assuming photochemical equilibrium, we construct simple equations for the calculation
of H,0 abundance from NGIMS ion and CO, measurements:

HCO" +H,0 5 H30" +CO
H20+ +H,0 L H3O+ + OH

H;0"+e 25 OH-+H+H
= H,O+H
=, OH+H,
2, 0+H,+H

[H307][e]
ki [HCOW + ko [H20+]

H,0] = (a1 + 0 + 03 + o)
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Dust EVENTS
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Dust EVENTS
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During the MY 34 global storm, we
observe a 2.4x increase in X(H,0)
over ~2 days.

No change in the H, mixing ratio is
observed, indicating that H,0, not H
is responsible for the observed
perturbations in the ionosphere.
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H PropucTtioN FROM WATER
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CONCLUSIONS

e We observe diurnal, seasonal, and dust-storm-induced variations in upper atmospheric H,0" and
H,0" abundances using data from NGIMS onboard MAVEN.

e These variations are due to the upward transport of H,0 past the hygropause and into the middle
and upper atmosphere.

e The upper atmosphere contains >1 ppm H,O throughout the Martian year.

—  Dust storms rapidly increase the upper atmospheric H,0 abundance by up to a factor of 2 over a
few sols.

e Escaping H atoms are produced from H,O near the exobase via reactions with ions.

e The contribution of H,0 to H escape is likely comparable to or greater than that of H..

— Aglobal dust storm leads to more than a Martian year’s worth of H production and escape in
just 45 days.
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